すうがくなどについてのメモ

数学を調べたり、教えたり、教えてもらったことのメモです

昨日の授業

昨日の授業では射影平面$P^2(\mathbb{R})$の話をしようとしたが、定義を話したところで生徒さんが$P^2(\mathbb{R})$が一点(無限遠点)と直線(無限遠直線)と平面に分解できることに気づき、そこから球面やトーラスを点、直線、平面に分解したらどうなるかや、そういった分解とオイラーの公式との関連へと話が脱線していった。

 

当初話そうと思っていた内容は話せなかったが、あれこれ話しながら幾何の楽しさに触れてもらえたようなので、自分の話したいことを一方的に話すより良かったと思う。

数論幾何の勉強

知人のUさんから月に一回くらいのペースで数論幾何について教えてもらっている。今日はその日。

$L/K$:Galois、$X = \text{Spec } K$、$U = \text{Spec } L$とする。今日の内容は、$X$上のetale $\mu$-torsor $F$で、$U$で自明化されるものはどんなものか?というもの。ここで$\mu$はAbel群に値をとる定数層。

こういったすごく幾何っぽい問題設定が数論的な話につながり、まさしく数論幾何、という感じがして興奮した。

 

 

今日の授業

今日は色々問題を考えたり解いたりしたが、生徒さんの気づきから発展して次のことがわかった:

「正の整数$n$に対して$2^n$の$10$進展開の先頭の数を$a_n$とする(つまり$a_n$は$1$から$9$の数)。この時$d=1,2,\cdots,9$に対して

$$ \lim_{N \to \infty}\frac{ \#\{n | n \leq N, a_n = d\}}{N} = \log_{10}(1 + 1/d) $$

となる(つまりベンフォードの法則が成り立つ例になっている)」

 証明はWeylの一様分布定理を用いれば出てくるが、ベンフォードの法則の数学的に厳密な例は考えたことがなかったので、こちらも勉強になった。

$R^2$内の二つの図形を同じとみなす見方

$R^2$内の二つの図形を「同じ」とみなす見方は色々ある。例えば二つの三角形が「合同」なときにその三角形を「同じ」と思いたくなったりするが、これはその二つの三角形が平行移動と回転、鏡映という変換で互いに移り合う時に「同じ」とみなす、という見方を採用していると考えることができる。

 

また、二つの三角形が「相似」な時にその三角形を「同じ」と思うことは、平行移動と回転、鏡映に加えて拡大・縮小変換によって互いに移り合う時に「同じ」とみなす、という見方を採用していると考えることができる。

 

それぞれのケースで変換全体を考えることはそれぞれに対応する変換群を考えることに対応するが、変換群としてアフィン変換群をとってくると、平面上の全ての三角形は「同じ」とみなせる。こういった考え方がいわゆるエルランゲン・プログラムという19世紀の幾何学の重要な視点に関連する(ということを最近ようやく理解した)。

 

今日この話を生徒さんにしたら、「これ以外にもっとゆるい条件で同じとみなせるものはあるのかな?」と質問がきた(←鋭い)。ふとその場で「$R^2$から$R^2$への同相写像全体のなす群で移り合う図形を同じとみなす、という考え方がいわゆるトポロジーではないかな?」と答えたが、言いながら自分でも「ああ確かにそうだな」ととても理解が深まった。

 

今日の授業

今日の生徒さんとは先週に引き続きgeogebraを使って幾何で遊んだ。

三角形の内接円と辺との接点と、対となる頂点を結んでできる三本の直線は一点で交わる。これをジュルゴンヌ点というらしい。面白いのは一般の二次曲線でも同様の性質が成り立つことで、こういうものを確かめるのにgeogebraはとても便利で楽しい。生徒さんもとても楽しんでいるようだった。

 

実際、放物線のケースでgeogebraを使って描いてみると以下のようになる↓ 

 

f:id:triprod1829:20171118114412p:plain

 

なぜこの話をしたかといえば、これらの事実と射影平面を関連づけることができるためで、射影平面という多様体の基本的な例に親しんで欲しいという意図がある。今回は射影平面の具体的な話はできなかったが、これからそういう話をしていきたい。

今日の授業

久々の更新。

 

今日の授業ではガロア理論幾何学的な類似である被覆空間の理論についての導入をした。被覆変換群などについて話したが興味を持ってもらえたようでよかった。

今日の授業

今日は冒頭に生徒さんが思いついたことについて話を聞く。身近なものから数学的に面白そうな現象を抽出して、考察したことを話してくれた。

数学科の正規のカリキュラムで習う数学とは一線を画すような内容だったが、一緒に考えているうちに非可換な群との関連も見えて、数学的に面白そうな内容を含んでいそう。自分なりの発見や考察はぜひ大事にしてほしいですね。